Experimental investigation of some aspects of insect-like flapping flight aerodynamics for application to micro air vehicles

7Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Insect-like flapping flight offers a power-efficient and highly manoeuvrable basis for micro air vehicles for indoor applications. Some aspects of the aerodynamics associated with the sweeping phase of insect wing kinematics are examined by making particle image velocimetry measurements on a rotating wing immersed in a tank of seeded water. The work is motivated by the paucity of data with quantified error on insect-like flapping flight, and aims to fill this gap by providing a detailed description of the experimental setup, quantifying the uncertainties in the measurements and explaining the results. The experiments are carried out at two Reynolds numbers-500 and 15,000-accounting for scales pertaining to many insects and future flapping-wing micro air vehicles, respectively. The results from the experiments are used to describe prominent flow features, and Reynolds number-related differences are highlighted. In particular, the behaviour of the leading-edge vortex at these Reynolds numbers is studied and the presence of Kelvin-Helmholtz instability observed at the higher Reynolds number in computational fluid dynamics calculations is also verified. © 2010 Springer-Verlag Berlin Heidelberg.

Cite

CITATION STYLE

APA

Ansari, S. A., Phillips, N., Stabler, G., Wilkins, P. C., Zbikowski, R., & Knowles, K. (2010). Experimental investigation of some aspects of insect-like flapping flight aerodynamics for application to micro air vehicles. In Animal Locomotion (pp. 215–236). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-11633-9_18

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free