Gene expression analysis of the Xenopus laevis early limb bud proximodistal axis

2Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Limb buds develop as bilateral outgrowths of the lateral plate mesoderm and are patterned along three axes. Current models of proximal to distal patterning of early amniote limb buds suggest that two signals, a distal organizing signal from the apical epithelial ridge (AER, Fgfs) and an opposing proximal (retinoic acid [RA]) act early on pattern this axis. Results: Transcriptional analysis of stage 51 Xenopus laevis hindlimb buds sectioned along the proximal-distal axis showed that the distal region is distinct from the rest of the limb. Expression of capn8.3, a novel calpain, was located in cells immediately flanking the AER. The Wnt antagonist Dkk1 was AER-specific in Xenopus limbs. Two transcription factors, sall1 and zic5, were expressed in distal mesenchyme. Zic5 has no described association with limb development. We also describe expression of two proximal genes, gata5 and tnn, not previously associated with limb development. Differentially expressed genes were associated with Fgf, Wnt, and RA signaling as well as differential cell adhesion and proliferation. Conclusions: We identify new candidate genes for early proximodistal limb patterning. Our analysis of RA-regulated genes supports a role for transient RA gradients in early limb bud in proximal-to-distal patterning in this anamniote model organism.

Cite

CITATION STYLE

APA

Hudson, D. T., Bromell, J. S., Day, R. C., McInnes, T., Ward, J. M., & Beck, C. W. (2022). Gene expression analysis of the Xenopus laevis early limb bud proximodistal axis. Developmental Dynamics, 251(11), 1880–1896. https://doi.org/10.1002/dvdy.517

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free