Developmental Coordination Disorder (DCD) is a neurodevelopmental disorder of unknown etiology that affects one in 20 children. There is an indication that DCD has an underlying genetic component due to its high heritability. Therefore, we explored the use of a recombinant inbred family of mice known as the BXD panel to understand the genetic basis of complex traits (i.e., motor learning) through identification of quantitative trait loci (QTLs). The overall aim of this study was to utilize the QTL approach to evaluate the genome-to-phenome correlation in BXD strains of mice in order to better understand the human presentation of DCD. Results of this current study confirm differences in motor learning in selected BXD strains and strains with altered cerebellar volume. Five strains – BXD15, BXD27, BXD28, BXD75, and BXD86 – exhibited the most DCD-like phenotype when compared with other BXD strains of interest. Results indicate that BXD15 and BXD75 struggled primarily with gross motor skills, BXD28 primarily had difficulties with fine motor skills, and BXD27 and BXD86 strains struggled with both fine and gross motor skills. The functional roles of genes within significant QTLs were assessed in relation to DCD-like behavior. Only Rab3a (Ras-related protein Rab-3A) emerged as a high likelihood candidate gene for the horizontal ladder rung task. This gene is associated with brain and skeletal muscle development, but lacked nonsynonymous polymorphisms. This study along with Gill et al. (same issue) is the first studies to specifically examine the genetic linkage of DCD using BXD strains of mice.
CITATION STYLE
Gill, K., Rajan, J. R. S., Chow, E., Ashbrook, D. G., Williams, R. W., Zwicker, J. G., & Goldowitz, D. (2023). Developmental coordination disorder: What can we learn from RI mice using motor learning tasks and QTL analysis. Genes, Brain and Behavior, 22(6). https://doi.org/10.1111/gbb.12859
Mendeley helps you to discover research relevant for your work.