The ball screw was developed for high speed and high precision operation; therefore, increasingly greater demands have been placed on the stiffness of the ball screw. Firstly, ANSYS software was used to compare the axial stiffness of a single-nut and single-arc ball screw and a single-nut and double-arc ball screw when the spiral angle is not considered. On this basis, the model of a single-nut ball screw was established taking into consideration the spiral lead angle, and then the variations in displacement and stiffness when the ball screw pair was subjected to an axial force were determined. The axial contact stiffness of the double-nut ball screw pair, subject to a pre-tightening force, was analyzed, according to the above-mentioned steps. The simulation results demonstrated that under the same working conditions, the stiffness of the double-arc ball screw was larger by between 5∼100 N/um than that of the single-arc ball screw. The spiral lead angle increased the axial stiffness of the ball screw pair, and the axial stiffness of the double-nut ball screw pair subject to a pre-tightening force was larger by between 790∼1360 N/um than that of the axial stiffness of the single-nut ball screw pair.
CITATION STYLE
Zhou, L. X., & Li, P. Y. (2018). Finite element analysis of the axial stiffness of a ball screw. In IOP Conference Series: Materials Science and Engineering (Vol. 372). Institute of Physics Publishing. https://doi.org/10.1088/1757-899X/372/1/012023
Mendeley helps you to discover research relevant for your work.