Acoustical excitation for damping estimation in rotating machinery

3Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In experimental modal analysis a structure is excited with a force in order to estimate the frequency response function. Typically, this force is generated by a shaker or a hammer impact. Both methods have proven their usefulness, but have some well-known disadvantages. A main disadvantage of the shaker is that it has to be fixed to the structure whereas with a hammer it is not possible to excite a specific frequency. To overcome these disadvantages, alternative non-contact methods can be used. There are several non-contact techniques, i.e. pressurized air, laser, acoustics, etc. By using acoustics as an excitation technique it is easy to select an excitation signal going from random noise to a simple sine. Also the equipment to produce the acoustic excitation is rather cheap. However, the state of the art does not offer a straightforward technique to estimate the excitation force, making it difficult for applications such as experimental modal analysis. In this research, acoustic excitation is compared with hammer excitation to estimate the frequency response function of two shafts. Especially a method to validate the force induced by the acoustics is derived. The final purpose of this research is to estimate the damping properties of rotating machinery. © The Society for Experimental Mechanics, Inc. 2013.

Cite

CITATION STYLE

APA

Vervisch, B., Monte, M., Stockman, K., & Loccufier, M. (2013). Acoustical excitation for damping estimation in rotating machinery. In Conference Proceedings of the Society for Experimental Mechanics Series (Vol. 6, pp. 473–480). https://doi.org/10.1007/978-1-4614-6546-1_51

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free