The instrument Spectral Response Function (ISRF) has a strong impact on spectral calibration and the atmospheric trace gases retrievals. An accurate knowledge or a fine characterization of the ISRF shape and its FWHM (Full width at half maximum) as well as its temporal behavior is therefore crucial. Designing a strategy for the characterization of the ISRF both on ground and in-flight is critical for future missions, such as the spectral imagers in the Copernicus program. We developed an algorithm to retrieve the instrument ISRF in-flight. Our method uses solar measurements taken in-flight by the instrument to fit a parameterized ISRF from on ground based calibration, and then retrieves the shape and FWHM of the actual in-flight ISRF. With such a strategy, one would be able to derive and monitor the ISRF during the commissioning and operation of spectrometer imager missions. We applied our method to retrieve the SCIAMACHY instrument ISRF in its different channels. We compared the retrieved ones with the on ground estimated ones. Besides some peculiarities found in SCIAMACHY channel 8, the ISRF results in other channels were relatively consistent and stable over time in most cases.
CITATION STYLE
Hamidouche, M., & Lichtenberg, G. (2018). In-flight retrieval of SCIAMACHY Instrument Spectral Response Function. Remote Sensing, 10(3). https://doi.org/10.3390/rs10030401
Mendeley helps you to discover research relevant for your work.