Permutationally invariant polynomial regression for energies and gradients, using reverse differentiation, achieves orders of magnitude speed-up with high precision compared to other machine learning methods

31Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Permutationally invariant polynomial (PIP) regression has been used to obtain machine-learned potential energy surfaces, including analytical gradients, for many molecules and chemical reactions. Recently, the approach has been extended to moderate size molecules with up to 15 atoms. The algorithm, including "purification of the basis,"is computationally efficient for energies; however, we found that the recent extension to obtain analytical gradients, despite being a remarkable advance over previous methods, could be further improved. Here, we report developments to further compact a purified basis and, more significantly, to use the reverse differentiation approach to greatly speed up gradient evaluation. We demonstrate this for our recent four-body water interaction potential. Comparisons of training and testing precision on the MD17 database of energies and gradients (forces) for ethanol against numerous machine-learning methods, which were recently assessed by Dral and co-workers, are given. The PIP fits are as precise as those using these methods, but the PIP computation time for energy and force evaluation is shown to be 10-1000 times faster. Finally, a new PIP potential energy surface (PES) is reported for ethanol based on a more extensive dataset of energies and gradients than in the MD17 database. Diffusion Monte Carlo calculations that fail on MD17-based PESs are successful using the new PES.

Cite

CITATION STYLE

APA

Houston, P. L., Qu, C., Nandi, A., Conte, R., Yu, Q., & Bowman, J. M. (2022). Permutationally invariant polynomial regression for energies and gradients, using reverse differentiation, achieves orders of magnitude speed-up with high precision compared to other machine learning methods. Journal of Chemical Physics, 156(4). https://doi.org/10.1063/5.0080506

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free