Adaptive performance in uncertain environments depends on the ability to continuously update internal beliefs about environmental states. Recent correlative evidence suggests that a frontoparietal network including the dorsolateral prefrontal cortex (dlPFC) supports belief updating under uncertainty, but whether the dlPFC serves a "causal"role in this process is currently not clear. To elucidate its contribution, we leveraged transcranial direct current stimulation (tDCS) over the right dlPFC, while 91 participants performed an incentivized belief-updating task. Participants also underwent a psychosocial stress or control manipulation to investigate the role of stress, which is known to modulate dlPFC functioning. We observed enhanced monetary value updating after anodal tDCS when it was normatively expected from a Bayesian perspective. A model-based analysis indicates that this effect was driven by belief updating. However, we also observed enhanced non-normative value updating, which might have been driven instead by expectancy violation. Enhanced normative and non-normative value updating reflected increased vs. decreased Bayesian rationality, respectively. Furthermore, cortisol increases were associated with enhanced positive, but not with negative, value updating. The present study thereby sheds light on the causal role of the right dlPFC in the remarkable human ability to navigate uncertain environments by continuously updating prior knowledge following new evidence.
CITATION STYLE
Schulreich, S., & Schwabe, L. (2021). Causal Role of the Dorsolateral Prefrontal Cortex in Belief Updating under Uncertainty. Cerebral Cortex, 31(1), 184–200. https://doi.org/10.1093/cercor/bhaa219
Mendeley helps you to discover research relevant for your work.