Predictive digital twin for optimizing patient-specific radiotherapy regimens under uncertainty in high-grade gliomas

18Citations
Citations of this article
54Readers
Mendeley users who have this article in their library.

Abstract

We develop a methodology to create data-driven predictive digital twins for optimal risk-aware clinical decision-making. We illustrate the methodology as an enabler for an anticipatory personalized treatment that accounts for uncertainties in the underlying tumor biology in high-grade gliomas, where heterogeneity in the response to standard-of-care (SOC) radiotherapy contributes to sub-optimal patient outcomes. The digital twin is initialized through prior distributions derived from population-level clinical data in the literature for a mechanistic model's parameters. Then the digital twin is personalized using Bayesian model calibration for assimilating patient-specific magnetic resonance imaging data. The calibrated digital twin is used to propose optimal radiotherapy treatment regimens by solving a multi-objective risk-based optimization under uncertainty problem. The solution leads to a suite of patient-specific optimal radiotherapy treatment regimens exhibiting varying levels of trade-off between the two competing clinical objectives: (i) maximizing tumor control (characterized by minimizing the risk of tumor volume growth) and (ii) minimizing the toxicity from radiotherapy. The proposed digital twin framework is illustrated by generating an in silico cohort of 100 patients with high-grade glioma growth and response properties typically observed in the literature. For the same total radiation dose as the SOC, the personalized treatment regimens lead to median increase in tumor time to progression of around six days. Alternatively, for the same level of tumor control as the SOC, the digital twin provides optimal treatment options that lead to a median reduction in radiation dose by 16.7% (10 Gy) compared to SOC total dose of 60 Gy. The range of optimal solutions also provide options with increased doses for patients with aggressive cancer, where SOC does not lead to sufficient tumor control.

References Powered by Scopus

Nonparametric Estimation from Incomplete Observations

50828Citations
N/AReaders
Get full text

Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma

17409Citations
N/AReaders
Get full text

Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms

2736Citations
N/AReaders
Get full text

Cited by Powered by Scopus

The effectiveness of digital twins in promoting precision health across the entire population: a systematic review

9Citations
N/AReaders
Get full text

Designing clinical trials for patients who are not average

9Citations
N/AReaders
Get full text

A Pilot Study on Patient-specific Computational Forecasting of Prostate Cancer Growth during Active Surveillance Using an Imaging-informed Biomechanistic Model

2Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Chaudhuri, A., Pash, G., Hormuth, D. A., Lorenzo, G., Kapteyn, M., Wu, C., … Willcox, K. (2023). Predictive digital twin for optimizing patient-specific radiotherapy regimens under uncertainty in high-grade gliomas. Frontiers in Artificial Intelligence, 6. https://doi.org/10.3389/frai.2023.1222612

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 13

81%

Researcher 2

13%

Professor / Associate Prof. 1

6%

Readers' Discipline

Tooltip

Engineering 10

63%

Medicine and Dentistry 3

19%

Computer Science 2

13%

Mathematics 1

6%

Article Metrics

Tooltip
Mentions
News Mentions: 1

Save time finding and organizing research with Mendeley

Sign up for free