The vibration signal measured from the mechanical equipment is associated with the operation of key structure, such as the rolling bearing and gear. The effective signal processing method for early weak fault has attracted much attention and it is of vital importance in mechanical fault monitoring and diagnosis. The recently proposed atomic sparse decomposition algorithm is performed around overcomplete dictionary instead of the traditional signal analysis method using orthogonal basis operator. This algorithm has been proved to be effective in extracting useful components from complex signal by reducing influence of background noises. In this paper, an improved linear frequency-modulated (Ilfm) function as an atom is employed in the proposed enhanced orthogonal matching pursuit (EOMP) algorithm. Then, quantum genetic algorithm (QGA) with the OMP algorithm is integrated since the QGA can quickly obtain the global optimal solution of multiple parameters for rapidly and accurately extracting fault characteristic information from the vibration signal. The proposed method in this paper is superior to the traditional OMP algorithm in terms of accuracy and reducing the computation time through analyzing the simulation data and real world data. The experimental results based on the application of gear and bearing fault diagnosis indicate that it is more effective than traditional method in extracting fault characteristic information.
CITATION STYLE
Lv, Y., Luo, J., & Yi, C. (2017). Enhanced Orthogonal Matching Pursuit Algorithm and Its Application in Mechanical Equipment Fault Diagnosis. Shock and Vibration, 2017. https://doi.org/10.1155/2017/4896056
Mendeley helps you to discover research relevant for your work.