β-Alanine betaine synthesis in the Plumbaginaceae. Purification and characterization of a trifunctional, S-adenosyl-L-methionine-dependent N-methyltransferase from Limonium latifolium leaves

50Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

Abstract

β-Alanine (β-Ala) betaine is an osmoprotective compound accumulated by most members of the highly stress-tolerant family Plumbaginaceae. Its potential role in plant tolerance to salinity and hypoxia makes its synthetic pathway an interesting target for metabolic engineering. In the Plumbaginaceae, β-Ala betaine is synthesized by S-adenosyl-L-methionine-dependent N-methylation of β-Ala via N-methyl β-Ala and N,N-dimethyl β-Ala. It was not known how many N-methyltransferases (NMTases) participate in the three N-methylations of β-Ala. An NMTase was purified about 1,890-fold, from Limonium latifolium leaves, using a protocol consisting of polyethylene glycol precipitation, heat treatment, anion-exchange chromatography, gel filtration, native polyacrylamide gel electrophoresis, and two substrate affinity chromatography steps. The purified NMTase was trifunctional, methylating β-Ala, N-methyl β-Ala, and N,N-dimethyl β-Ala. Gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses indicated that the native NMTase is a dimer of 43-kD subunits. The NMTase had an apparent Km of 45 μM S-adenosyl-l-methionine and substrate inhibition was observed above 200 μM. The apparent Km values for the methyl acceptor substrates were 5.3, 5.7, and 5.9 mM for β-Ala, N-methyl β-Ala, and N,N-dimethyl β-Ala, respectively. The NMTase had an isoelectric point of 5.15 and was reversibly inhibited by the thiol reagent p-hydroxymercuribenzoic acid.

Cite

CITATION STYLE

APA

Rathinasabapathi, B., Fouad, W. M., & Sigua, C. A. (2001). β-Alanine betaine synthesis in the Plumbaginaceae. Purification and characterization of a trifunctional, S-adenosyl-L-methionine-dependent N-methyltransferase from Limonium latifolium leaves. Plant Physiology, 126(3), 1241–1249. https://doi.org/10.1104/pp.126.3.1241

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free