This research uses the critical reflectance technique, a space-based remote sensing method, to measure the spatial distribution of aerosol absorption properties over land. Choosing two regions dominated by biomass burning aerosols, a series of sensitivity studies were undertaken to analyze the potential limitations of this method for the type of aerosol to be encountered in the selected study areas, and to show that the retrieved results are relatively insensitive to uncertainties in the assumptions used in the retrieval of smoke aerosol. The critical reflectance technique is then applied to Moderate Resolution Imaging Spectrometer (MODIS) data to retrieve the spectral aerosol single-scattering albedo (SSA) in South African and South American biomass burning events. The retrieved results were validated with collocated Aerosol Robotic Network (AERONET) retrievals. Approximately 67% of the comparisons show a difference between MODIS and AERONET smaller than 0.03, the magnitude of the AERONET uncertainty. The overlap of the two retrievals increases to 88%, allowing for measurement variance in the MODIS retrievals, as well. The ensemble average of MODIS-derived SSA for the Amazon forest station is 0.92 at 670 nm, and 0.84-0.89 for the southern African savanna stations. The critical reflectance technique allows evaluation of the spatial variability of SSA and shows that SSA in South America exhibits higher spatial variation than in South Africa. The accuracy of the retrieved aerosol SSA from MODIS data indicates that this product can help to better understand how aerosols affect the regional and global climate. Copyright 2011 by the American Geophysical Union.
CITATION STYLE
Zhu, L., Martins, J. V., & Remer, L. A. (2011). Biomass burning aerosol absorption measurements with MODIS using the critical reflectance method. Journal of Geophysical Research Atmospheres, 116(7). https://doi.org/10.1029/2010JD015187
Mendeley helps you to discover research relevant for your work.