© 2016 EMBO. Bone anabolic agents promoting bone formation and rebuilding damaged bones would ideally overcome the limitations of anti-resorptive therapy, the current standard prescription for osteoporosis. However, the currently prescribed parathyroid hormone (PTH)-based anabolic drugs present limitations and adverse effects including osteosarcoma during long-term use. Also, the antibody-based anabolic drugs that are currently being developed present the potential limits in clinical application typical of macromolecule drugs. We previously identified that CXXC5 is a negative feedback regulator of the Wnt/β-catenin pathway via its interaction with Dishevelled (Dvl) and suggested the Dvl-CXXC5 interaction as a potential target for anabolic therapy of osteoporosis. Here, we screened small-molecule inhibitors of the Dvl-CXXC5 interaction via a newly established invitro assay system. The screened compounds were found to activate the Wnt/β-catenin pathway and enhance osteoblast differentiation in primary osteoblasts. The bone anabolic effects of the compounds were shown using exvivo-cultured calvaria. Nuclear magnetic resonance (NMR) titration analysis confirmed interaction between Dvl PDZ domain and KY-02061, a representative of the screened compounds. Oral administration of KY-02327, one of 55 newly synthesized KY-02061 analogs, successfully rescued bone loss in the ovariectomized (OVX) mouse model. In conclusion, small-molecule inhibitors of the Dvl-CXXC5 interaction that block negative feedback regulation of Wnt/β-catenin signaling are potential candidates for the development of bone anabolic anti-osteoporosis drugs.
CITATION STYLE
Kim, H., Choi, S., Yoon, J., Lim, H. J., Lee, H., Choi, J., … Choi, K. (2016). Small molecule inhibitors of the Dishevelled‐ CXXC 5 interaction are new drug candidates for bone anabolic osteoporosis therapy. EMBO Molecular Medicine, 8(4), 375–387. https://doi.org/10.15252/emmm.201505714
Mendeley helps you to discover research relevant for your work.