Study of 0.9Al2O3–0.1TiO2 ceramics prepared by a novel DCC-HVCI method

11Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

In this paper, in-situ coagulation of 0.9Al2O3–0.1TiO2 suspension and microwave dielectric properties of 0.9Al2O3–0.1TiO2 ceramics prepared by a novel direct coagulation casting via high valence counter ions (DCC-HVCI) method were proposed. The 0.9Al2O3–0.1TiO2 suspension could be coagulated via controlled release of calcium ions from calcium iodate at an elevated temperature. The influence of tri-ammonium citrate (TAC) content, solid loading, and calcium iodate content on the rheological properties of the suspension was investigated. In addition, the influence of coagulation temperature on coagulation time and properties of green bodies was also studied. It was found that the stable 0.9Al2O3–0.1TiO2 suspension could be successfully prepared by adding 0.3 wt% TAC and adjusting pH value to 10–12 at room temperature. 0.9Al2O3–0.1TiO2 green bodies with uniform microstructures were coagulated by adding 8.0 g/L calcium iodate after treating at 70 °C for 1 h. 0.9Al2O3–0.1TiO2 ceramics, sintered at 1500 for 4 h and annealed at 1100°C for 5 h, showed °Cuniform microstructures with density of 3.62±0.02 g/cm3. The microwave dielectric properties of 0.9Al2O3–0.1TiO2 ceramics prepared by DCC-HVCI method were: εr = 11.26±0.06, Q×f = 11569±629 GHz, τf= 0.93±0.60 ppm/°C. The DCC-HVCI method is a novel and promising route without binder removal process to prepare complex-shaped microwave dielectric ceramics with uniform microstructures and good microwave dielectric properties.

Cite

CITATION STYLE

APA

Wu, J. M., Xiao, H., Liu, M. Y., Chen, Y., Ma, Y. X., Cheng, L. J., & Shi, Y. S. (2018). Study of 0.9Al2O3–0.1TiO2 ceramics prepared by a novel DCC-HVCI method. Journal of Advanced Ceramics, 7(2), 152–159. https://doi.org/10.1007/s40145-018-0266-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free