Predicting Species' Geographic Distributions Based on Ecological Niche Modeling

  • Peterson A
N/ACitations
Citations of this article
181Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Recent developments in geographic information systems and their application to conservation biology open doors to exciting new synthetic analyses. Exploration of these possibilities, however, is limited by the quality of information available: most biodiversity data are incomplete and characterized by biased sampling. Inferential procedures that provide robust and reliable predictions of species' geographic distributions thus become critical to biodiversity analyses. In this contribution, models of species' ecological niches are developed using an artificial-intelligence algorithm, and projected onto geography to predict species' distributions. To test the validity of this approach, I used North American Breeding Bird Survey data, with large sample sizes for many species. I omitted randomly selected states from model building, and tested models using the omitted states. For the 34 species tested, all predictions were highly statistically significant (all P < 0.001), indicating excellent predictive ability. This inferential capacity opens doors to many synthetic analyses based on primary point occurrence data.Predicción de Áreas de Distribución de Especies con Pase en Modelaje de Nichos EcológicosResumen. Avances recientes en los sistemas de información geográfica y su aplicación en la biología de conservación presentan la posibilidad de analisis nuevos y sintéticos. La exploración de estas posibilidades, de todas formas, se limita por la calidad de información disponible: la gran mayoria de datos respecto a la diversidad biológica son incompletos y sesgados. Por eso, procedimientos de inferencia que proveen predicciones robustas y confiables de distribuciones de especies se hacen importantes para los análisis de la biodiversidad. En esta contribución, se desarrollan modelos de los nichos ecológicos por medio de un algoritmo de inteligencia artificial, y los proyeccionamos en la geografía para predecir las distribuciones geográficas de especies. Para probar el método, se usan los datos del North American Breeding Bird Survey, con tamaños de muestra grande. Se construyeron modelos con base en 30 estados unidenses seleccionados al azar, y se probaron los modelos con base en los 20 estados restantes. De las 34 especies que se analizaron, todos mostraron un alto grado de significanza estadística (todos P < 0.001), lo cual indica un alto grado de predictividad. Esta capacidad de inferencia abre la puerta a varios analisis sintéticos con base en puntos conocidos de ocurrencia de especies.

Cite

CITATION STYLE

APA

Peterson, A. T. (2001). Predicting Species’ Geographic Distributions Based on Ecological Niche Modeling. The Condor, 103(3), 599–605. https://doi.org/10.1093/condor/103.3.599

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free