Let-7 microRNAs (miRNAs) are highly conserved well-established promoters of terminal differentiation that are expressed in healthy adult tissues and frequently repressed in cancer cells. The tumor suppressive role of let-7 in a variety of cancers in vitro and in vivo has been widely documented and prompted these miRNAs to be candidate genes for miRNA replacement therapy. In this study we described a new role of let-7a in reprogramming cancer metabolism, recently identified as a new hallmark of cancer. We show that let-7a down-regulates key anabolic enzymes and increases both oxidative phosphorylation and glycolysis in triple-negative breast cancer and metastatic melanoma cell lines. Strikingly, the accelerated glycolysis coexists with drastically reduced cancer features. Moreover, let-7a causes mitochondrial ROS production concomitant with the up-regulation of oxidative stress responsive genes. To exploit these increased ROS levels for therapeutic purposes, we combined let-7a transfection with the chemotherapeutic drug doxorubicin. In both cancer types let-7a increased cell sensitivity to doxorubicin. Pre-treatment with N-acetyl cysteine (NAC) totally abolished this effect, indicating that the increased doxorubicin sensitivity of let-7a cells depends on the redox pathway. We thus have demonstrated that let-7a plays a prominent role in regulating energy metabolism in cancer cells, further expanding its therapeutic potential.
CITATION STYLE
Serguienko, A., Grad, I., Wennerstrøm, A. B., Meza-Zepeda, L. A., Thiede, B., Stratford, E. W., … Munthe, E. (2015). Metabolic reprogramming of metastatic breast cancer and melanoma by Let-7a microRNA. Oncotarget, 6(4), 2451–2465. https://doi.org/10.18632/oncotarget.3235
Mendeley helps you to discover research relevant for your work.