Regionalization of surface lipids in insects

58Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cuticular hydrocarbons (CHCs) play a critical role in the establishment of the waterproof barrier that prevents dehydration and wetting in insects. While rich data are available on CHC composition in different species, we know little about their distribution and organization. Here, we report on our studies of the surface barrier of the fruit fly Drosophila melanogaster applying a newly developed Eosin Y staining method. The inert Eosin Y penetrates different regions of the adult body at distinct temperatures. By contrast, the larval body takes up the dye rather uniformly and gradually with increasing temperature. Cooling down specimens to 25°C after incubation at higher temperatures restores impermeability. Eosin Y penetration is also sensitive to lipid solvents such as chloroform indicating that permeability depends on CHCs. As in D. melanogaster adult flies, Eosin Y penetration is regionalized in Tenebrio molitor larvae, whereas it is not in Locusta migratoria nymphs. Regionalization of the fly surface implies tissue-specific variation of the genetic or biochemical programmes of CHC production and deposition. The Eosin Y-based map of CHC distribution may serve to identify the respective factors that are activated to accommodate ecological needs.

Cite

CITATION STYLE

APA

Wang, Y., Yu, Z., Zhang, J., & Moussian, B. (2016). Regionalization of surface lipids in insects. Proceedings of the Royal Society B: Biological Sciences, 283(1830). https://doi.org/10.1098/rspb.2015.2994

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free