Synthesis of Mn-Co-Ni Composite Electrode by Anodic and Cathodic Electrodeposition for Indirect Electro-oxidation of Phenol: Optimization of the Removal by Response Surface Methodology

4Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In the present work, Response Surface Methodology (RSM) was utilized to optimize process variables and find the best circumstances for indirect electrochemical oxidation of mimicked wastewater to remove phenol contaminants using prepared ternary composite electrode. The electrodeposition process is used for the synthesis of a ternary composite electrode of Mn, Co, and Ni oxides. The selected concentrations of metal salts of these elements were 0.05, 0.1, and 1.5 M, with constant molar ratio, current density, and electrolysis time of 1:1:1, 25 mA/cm2, and 2 h. Interestedly, the gathered Mn-Co-Ni oxides were deposited at both the anode and cathode. X-ray diffraction (XRD) and scanning electron microscopy (SEM) facilitated the qualitative characterization of surface structure and morphology of the accumulated oxides. The energy dispersive X-ray (EDX) provided a semi-quantitative analysis of deposit composition. The atomic force microscopy (AFM) apparatus quantified t he r oughness. We examined the efficiency of composite el ectrodes in coinciding wi th the removal of Chemical Oxygen Demand (COD) under current densities of 40, 60, and 80 mA/cm2, pH values of 3, 4, and 5, and NaCl concentrations of 1, 1.5, 2 g/l. RSM covered the optimization of process parameters in conjunction with Central Composite Design (CCD). The COD represented the response function in the optimization procedure. The optimal current density, NaCl concentration, and pH magnitude were 80 mA/cm2, 1.717 g/l, and 3, respectively. The efficiency of COD elimination of 99.925% attained after 1 hour of indirect electrochemical oxidation with an energy consumption of 152.380 kWh per kilogram of COD. The COD elimination model is significant based on the correlation coefficient (R2) and F-values, and the experimental data fitted well to a second-order polynomial model with R2 of 98.93%.

Cite

CITATION STYLE

APA

Ahmed, Y. A., & Salman, R. H. (2023). Synthesis of Mn-Co-Ni Composite Electrode by Anodic and Cathodic Electrodeposition for Indirect Electro-oxidation of Phenol: Optimization of the Removal by Response Surface Methodology. Ecological Engineering and Environmental Technology, 24(8), 107–119. https://doi.org/10.12912/27197050/171626

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free