Classification of processing damage in sugar beet (Beta vulgaris) seeds by multispectral image analysis

23Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

Abstract

The pericarp of monogerm sugar beet seed is rubbed off during processing in order to produce uniformly sized seeds ready for pelleting. This process can lead to mechanical damage, which may cause quality deterioration of the processed seeds. Identification of the mechanical damage and classification of the severity of the injury is important and currently time consuming, as visual inspections by trained analysts are used. This study aimed to find alternative seed quality assessment methods by evaluating a machine vision technique for the classification of five damage types in monogerm sugar beet seeds. Multispectral imaging (MSI) was employed using the VideometerLab3 instrument and instrument software. Statistical analysis of MSI-derived data produced a model, which had an average of 82% accuracy in classification of 200 seeds in the five damage classes. The first class contained seeds with the potential to produce good seedlings and the model was designed to put more limitations on seeds to be classified in this group. The classification accuracy of class one to five was 59, 100, 77, 77 and 89%, respectively. Based on the results we conclude that MSI-based classification of mechanical damage in sugar beet seeds is a potential tool for future seed quality assessment.

Cite

CITATION STYLE

APA

Salimi, Z., & Boelt, B. (2019). Classification of processing damage in sugar beet (Beta vulgaris) seeds by multispectral image analysis. Sensors (Switzerland), 19(10). https://doi.org/10.3390/s19102360

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free