Salmonella enterica serovars infect a broad range of mammalian hosts including humans, causing both gastrointestinal and systemic diseases. Following uptake into host cells, bacteria replicate within vacuoles (Salmonella-containing vacuoles; SCVs). Clusters of SCVs are frequently associated with a meshwork of F-actin. This meshwork is dependent on the Salmonella pathogenicity island 2 encoded type III secretion system and its effector SteC. SteC contains a region with weak similarity to conserved subdomains of eukaryotic kinases and has kinase activity that is required for the formation of the F-actin meshwork. Several substrates of SteC have been identified. In this mini-review, we attempt to integrate these findings and propose a more unified model to explain SCV-associated F-actin: SteC (i) phosphorylates the actin sequestering protein Hsp27, which increases the local G-actin concentration (ii) binds to and phosphorylates formin family FMNL proteins, which enables actin polymerisation and (iii) phosphorylates MEK, resulting in activation of the MEK/ERK/MLCK/Myosin II pathway, leading to F-actin bundling. We also consider the possible physiological functions of SCV-associated F-actin and similar structures produced by other intracellular bacterial pathogens.
CITATION STYLE
Heggie, A., Cerny, O., & Holden, D. W. (2021, April 1). SteC and the intracellular Salmonella-induced F-actin meshwork. Cellular Microbiology. Blackwell Publishing Ltd. https://doi.org/10.1111/cmi.13315
Mendeley helps you to discover research relevant for your work.