Linking biogeography to physiology: Evolutionary and acclimatory adjustments of thermal limits

352Citations
Citations of this article
586Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Temperature-adaptive physiological variation plays important roles in latitudinal biogeographic patterning and in setting vertical distributions along subtidal-to-intertidal gradients in coastal marine ecosystems. Comparisons of congeneric marine invertebrates reveal that the most warm-adapted species may live closer to their thermal tolerance limits and have lower abilities to increase heat tolerance through acclimation than more cold-adapted species. In crabs and snails, heart function may be of critical importance in establishing thermal tolerance limits. Temperature-mediated shifts in gene expression may be critical in thermal acclimation. Transcriptional changes, monitored using cDNA microarrays, have been shown to differ between steady-state thermal acclimation and diurnal temperature cycling in a eurythermal teleost fish (Austrofundulus limnaeus). In stenothermal Antarctic notothenioid fish, losses in capacity for temperature-mediated gene expression, including the absence of a heat-shock response, may reduce the abilities of these species to acclimate to increased temperatures. Differences among species in thermal tolerance limits and in the capacities to adjust these limits may determine how organisms are affected by climate change. © 2005 Somero; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Somero, G. N. (2005, January 17). Linking biogeography to physiology: Evolutionary and acclimatory adjustments of thermal limits. Frontiers in Zoology. https://doi.org/10.1186/1742-9994-2-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free