Ultrasonic vocalizations of flying bats were effectively monitored with radiotelemetry. We describe a device light enough to be carried by an 11 g bat for periods of up to 1 h. It transmitted signals adequate for fine frequency analysis within a range of approximately 3 m. Telemetry permitted the recording of constant-frequency pulses free from flight-induced Doppler shifts and without time delays. The difference in frequency between telemetered signals and the same signals detected by a remote microphone was used to calculate velocity and Doppler shifts. Pulse emission behavior of Pteronotus parnellii in flight was compared with simulated flight on a pendulum. The data showed significant differences in echo bandwidths, constant-frequency pulse durations and interpulse intervals. In flight, pulses and interpulse intervals tended to be shorter and bats maintained echo frequencies within a significantly narrower band. Phases of echolocation that characterized the approach to a target were clearly evident in flight, but not during pendulum swings. Differences in pulse durations and interpulse intervals may be correlated with the integration of wingbeat, respiration and vocalization. The absence of wing motion in simulated flight changes this integration.
CITATION STYLE
Lancaster, W. C., Keating, A. W., & Henson, O. W. (1992). Ultrasonic vocalizations of flying bats monitored by radiotelemetry. The Journal of Experimental Biology, 173, 43–58. https://doi.org/10.1242/jeb.173.1.43
Mendeley helps you to discover research relevant for your work.