New compounds, named nuclear aggregates of polyamines, having a molecular mass of 8000, 4800 and < 1000 Da, were found in the nuclear extracts of several replicating cells. Their molecular structure is based on the formation of ionic bonds between polyamine ammonium and phosphate groups. The production of the 4800 Da compound, resulting from the aggregation of five or more < 1000 Da units, was increased in Caco-2 cells treated with the mitogen gastrin. Dissolving single polyamines in phosphate buffer resulted in the in vitro aggregation of polyamines with the formation of compounds with molecular masses identical to those of natural aggregates. After the interaction of the 4800 Da molecular aggregate with the genomic DNA at 37°C, both the absorbance of DNA in phosphate buffer and the DNA mobility in agarose gel increased greatly. Furthermore, these compounds were able to protect the genomic DNA from digestion by DNase I, a phosphodiesterasic endonuclease. Our data indicate that the nuclear aggregate of polyamines interacts with DNA phosphate groups and influence, more efficaciously than single polyamines, both the conformation and the protection of the DNA.
CITATION STYLE
D’Agostino, L., & Di Luccia, A. (2002). Polyamines interact with DNA as molecular aggregates. European Journal of Biochemistry, 269(17), 4317–4325. https://doi.org/10.1046/j.1432-1033.2002.03128.x
Mendeley helps you to discover research relevant for your work.