Urbanization has led to accelerated traffic congestion, posing a significant obstacle to urban development. Traditional traffic signal scheduling methods are often inefficient and cumbersome, resulting in unnecessary waiting times for vehicles and pedestrians, exacerbating the traffic situation. To address this issue, this article proposes a dynamic traffic signal scheduling system based on an improved greedy algorithm. Unlike conventional approaches, we introduce a reward function and a cost model to ensure fair scheduling plans. A constraint function is also established, and the traffic signal scheduling is iterated through the feasible matrix using the greedy algorithm to simplify the decision-making process and enhance solution efficiency. Moreover, an emergency module is integrated to prioritize special emergency vehicles, reducing their response time during emergencies. To validate the effectiveness of our dynamic traffic signal scheduling system, we conducted simulation experiments using the Simulation of Urban Mobility (SUMO) traffic simulation suite and the SUMO traffic control interface Traci. The results indicate that our system significantly improves intersection throughput and adapts well to various traffic conditions, effectively resolving urban traffic congestion while ensuring fair scheduling plans.
CITATION STYLE
Sun, G., Qi, R., Liu, Y., & Xu, F. (2024). A dynamic traffic signal scheduling system based on improved greedy algorithm. PLoS ONE, 19(3 MARCH). https://doi.org/10.1371/journal.pone.0298417
Mendeley helps you to discover research relevant for your work.