Trees commonly reproduce via masting cycles, which involves synchronized inter-annual variability in fruit crop size. A few individuals in a population will commonly produce much more fruit than others. If these trees produce fruit more frequently, as indicated by a lower inter-annual variability in fruit production, they may dominate fruit production over time. By measuring fruit production of 1635 individuals of 10 temperate tree species across 4 years in northern lower Michigan, we estimated the inter-annual variability and synchrony in each species. We compared fruit production estimates with measurements of tree size, soil nutrient availability and neighbourhood crowding to investigate the source of inter-individual variation in number of fruit produced. We found that trees’ fruit production increased with tree size. The trees that accounted for the largest proportion of total fruit production had lower inter-annual variability and higher synchrony in fruit production. These ‘super-producer’ trees tended to have high nutrient availability and few neighbouring trees, but there were no effects of nutrient availability or neighbourhood crowding on fruit production in the population as a whole. Synthesis. Masting is a population-level phenomenon, and is typically studied at this level. However, when we apply individual tree observations of fruit production to this phenomenon, it reveals super-producers which produce fruit more consistently than the rest of the population. By reducing inter-annual variability in fruit production, but increasing synchrony and making large numbers of fruit, super-producers may be able to reap the benefits of masting while governing population fruit production over time.
CITATION STYLE
Minor, D. M., & Kobe, R. K. (2017). Masting synchrony in northern hardwood forests: super-producers govern population fruit production. Journal of Ecology, 105(4), 987–998. https://doi.org/10.1111/1365-2745.12729
Mendeley helps you to discover research relevant for your work.