Origami-based "book" shaped three-dimensional electrochemical paper microdevice for sample-to-answer detection of pathogens

16Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

Abstract

Herein, an ease-of-use and highly sensitive origami-based "book"shaped three-dimensional electrochemical paper microdevice based on nucleic acid testing (NAT) methodology was developed for sample-to-answer detection of pathogens from whole blood and food samples. The whole steps of NAT, including sample preparation, amplification and detection, were performed by alternately folding the panels of the microdevice, just like flipping a book. The screen-printing electrodes were combined with wax-printing technology to construct a paper-based electrochemical unit to monitor Loop-mediated isothermal amplification (LAMP) reaction with an electrochemical strategy. After nucleic acid extraction and purification with the glass fiber, the LAMP reaction was performed for 45 min to amplify the extracted nucleic acid sequence, followed by the execution of the electrochemical interrogation reaction based on methylene blue (MB) and double-stranded LAMP amplicons. Starting with whole blood and food samples spiked with Salmonella typhimurium, this microdevice was successfully applied to identify pathogens from biological samples with satisfactory sensitivity and specificity. Therefore, the proposed origami-based "book"shaped three-dimensional paper microdevice has great potential for disease diagnosis, food safety analysis applications in the future.

Cite

CITATION STYLE

APA

He, T., Li, J., Liu, L., Ge, S., Yan, M., Liu, H., & Yu, J. (2020). Origami-based “book” shaped three-dimensional electrochemical paper microdevice for sample-to-answer detection of pathogens. RSC Advances, 10(43), 25808–25816. https://doi.org/10.1039/d0ra03833d

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free