The general problem of drawing inferences from uncertain or incomplete evidence has invited a variety of technical approaches, some mathematically rigorous and some largely informal and intuitive. Most current inference systems in artificial intelligence have emphasized intuitive methods, because the absence of adequate statistical samples forces a reliance on the subjective judgment of human experts. We describe in this paper a subjective Bayesian inference method that realizes some of the advantages of both formal and informal approaches. Of particular interest are the modifications needed to deal with the inconsistencies usually found in collections of subjective statements.
CITATION STYLE
Duda, R. O., Hart, P. E., & Nilsson, N. J. (1976). Subjective Bayesian methods for rule-based inference systems. In AFIPS Conference Proceedings - 1976 National Computer Conference AFIPS 1976 (pp. 1075–1082). Association for Computing Machinery, Inc. https://doi.org/10.1145/1499799.1499948
Mendeley helps you to discover research relevant for your work.