Background: Solid tumors usually develop local hypoxia, which renders them resilient to radiotherapy. MiR-210 is the most consistently and robustly induced miRNA under hypoxia and functions as a micro-controller of a wide range of cellular responses to hypoxia. Hence, it is important to investigate the effect of knockdown of miR-210 in tumorigenesis and evaluate the efficacy of knockdown of miR-210 in combination with radiotherapy on human tumor xenograft in nude mice. Materials and methods: SMMC-7721 Cells with stable integration of the anti-sense miR-210 were generated through lentiviral-mediated gene transfer and were subcutaneously implanted into nude mice. Mice were monitored for tumor growth and survival after radiotherapy. MiR-210 expression in tumor tissues was assessed by real-time Reverse transcription-Polymerase Chain Reaction (RT-PCR). Protein expression of HIF-1α and miR-210 targeted genes in human hepatoma xenograft was assessed by Western blot. Tumors were analyzed for proliferation, apoptosis, and angiogenesis biomarkers by immunohistochemistry staining.Results: Tumor growth was delayed in miR-210 downregulated xenograft. Knockdown of miR-210 increased protein expression of miR-210 targeted genes, but decreased HIF-1α protein in hepatoma xenograft. Knockdown of miR-210 in combination with radiotherapy is more effective than radiotherapy alone or miR-210 knockdown therapy alone in suppressing tumor growth and extending survival duration. Combined therapy decreased Ki-67-positive cells and CD31-positive cells and increased TUNEL-positive cells in tumor xenograft.Conclusions: Knockdown of miR-210 in combination with radiotherapy showed an enhanced anti-tumor effect on human hepatoma xenograft. Our experiments demonstrated specific inhibition of miR-210 expression might be a means to enhance the effectiveness of radiotherapy to human hepatoma. © 2013 Yang et al.; licensee BioMed Central Ltd.
CITATION STYLE
Yang, W., Wei, J., Sun, T., & Liu, F. (2013). Effects of knockdown of miR-210 in combination with ionizing radiation on human hepatoma xenograft in nude mice. Radiation Oncology, 8(1). https://doi.org/10.1186/1748-717X-8-102
Mendeley helps you to discover research relevant for your work.