Glioneuronal tumors constitute a histologically diverse group of primary central nervous system neoplasms that are typically slow-growing and managed conservatively. Genetic alterations associated with glioneuronal tumors include BRAF mutations and oncogenic fusions. To further characterize this group of tumors, we collected a cohort of 26 glioneuronal tumors and performed in-depth genomic analysis. We identified mutations in BRAF (34%) and oncogenic fusions (30%), consistent with previously published reports. In addition, we discovered novel oncogenic fusions involving members of the NTRK gene family in a subset of our cohort. One-patient with BCAN exon 13 fused to NTRK1 exon 11 initially underwent a subtotal resection for a 4th ventricular glioneuronal tumor but ultimately required additional therapy due to progressive, symptomatic disease. Given the patient’s targetable fusion, the patient was enrolled on a clinical trial with entrectinib, a pan-Trk, ROS1, and ALK (anaplastic lymphoma kinase) inhibitor. The patient was treated for 11 months and during this time volumetric analysis of the lesion demonstrated a maximum reduction of 60% in the contrast-enhancing tumor compared to his pre-treatment magnetic resonance imaging study. The radiologic response was associated with resolution of his clinical symptoms and was maintained for 11 months on treatment. This report of a BCAN-NTRK1 fusion in glioneuronal tumors highlights its clinical importance as a novel, targetable alteration.
CITATION STYLE
Alvarez-Breckenridge, C., Miller, J. J., Nayyar, N., Gill, C. M., Kaneb, A., D’Andrea, M., … Brastianos, P. K. (2017). Clinical and radiographic response following targeting of BCAN-NTRK1 fusion in glioneuronal tumor. Npj Precision Oncology, 1(1). https://doi.org/10.1038/s41698-017-0009-y
Mendeley helps you to discover research relevant for your work.