Cardiorenal syndrome (CRS) is defined as a disorder resulting from the abnormal interaction between the heart and kidney, in which acute or chronic dysfunction of one organ may lead to acute and/or chronic dysfunction of the other. The functional interplay between the heart and kidney is characterized by a complex bidirectional symbiotic interaction, regulated by a wide array of both genetic and environmental mechanisms. There are at least five known subtypes of CRS, based on the severity of clinical features and the degree of heart/renal failure. The fourth subtype (cardiorenal syndrome type 4 (CRS4)) is characterized by a primary chronic kidney disease (CKD), which in turn leads to a decreased cardiac function. Impairment of renal function is among the most important pathophysiological factors contributing to heart failure (HF) in the pediatric age group, and cardiovascular complications could be one of the most important causes of mortality in pediatric patients with advanced CKD. In this context, a loss of glomerular filtration rate directly correlates with both the progression of cardiovascular complications in CRS and the risk of HF. This review describes the interaction pathways between the heart and kidney and the recently identified pathophysiological mechanisms underlying pediatric CRS, with a special focus on CRS4, which encompasses both primary CKD and cardiovascular disease (CVD).
CITATION STYLE
Ceravolo, G., La Macchia, T., Cuppari, C., Dipasquale, V., Gambadauro, A., Casto, C., … Chimenz, R. (2021). Update on the classification and pathophysiological mechanisms of pediatric cardiorenal syndromes. Children, 8(7). https://doi.org/10.3390/children8070528
Mendeley helps you to discover research relevant for your work.