In this paper we study existence and uniqueness of solutions for the boundary-value problem, with initial datum in L 1 ( Ω ) L^{1}(\Omega ) , u t = d i v a ( x , D u ) in ( 0 , ∞ ) × Ω , \begin{equation*}u_{t} = \mathrm {div} \mathbf {a} (x,Du) \quad \text {in } (0, \infty ) \times \Omega , \end{equation*} − ∂ u ∂ η a ∈ β ( u ) on ( 0 , ∞ ) × ∂ Ω , \begin{equation*}-{\frac {{\partial u} }{{\partial \eta _{a}}}} \in \beta (u) \quad \text {on } (0, \infty ) \times \partial \Omega ,\end{equation*} u ( x , 0 ) = u 0 ( x ) in Ω , \begin{equation*}u(x, 0) = u_{0}(x) \quad \text {in }\Omega ,\end{equation*} where a is a Carathéodory function satisfying the classical Leray-Lions hypothesis, ∂ / ∂ η a \partial / {\partial \eta _{a}} is the Neumann boundary operator associated to a \mathbf {a} , D u Du the gradient of u u and β \beta is a maximal monotone graph in R × R {\mathbb {R}}\times {\mathbb {R}} with 0 ∈ β ( 0 ) 0 \in \beta (0) .
CITATION STYLE
Andreu, F., Mazón, J., de León, S., & Toledo, J. (1999). Existence and uniqueness for a degenerate parabolic equation with 𝐿1-data. Transactions of the American Mathematical Society, 351(1), 285–306. https://doi.org/10.1090/s0002-9947-99-01981-9
Mendeley helps you to discover research relevant for your work.