Longitudinal bone growth, and hence stature, are functions of growth plate chondrocyte proliferation and hypertrophy. Insulin-like growth factor 1 (Igf1) is reputed to augment longitudinal bone growth by stimulating growth plate chondrocyte proliferation. In this study, however, we demonstrate that chondrocyte numbers and proliferation are normal in Igf1 null mice despite a 35% reduction in the rate of long bone growth. Igf1 null hypertrophic chondrocytes differentiate normally in terms of expressing specialized proteins such as collagen X and alkaline phosphatase, but are smaller than wild-type at all levels of the hypertrophic zone. The terminal hypertrophic chondrocytes, which form the scaffold on which long bone growth extends, are reduced in linear dimension by 30% in Igf1 null mice, accounting for most of their decreased longitudinal growth. The expression of the insulin-sensitive glucose transporter, GLUT4, is significantly decreased and the insulin-regulated enzyme glycogen synthase kinase 3beta (GSK3) is hypo-phosphorylated in Igf1 null chondrocytes. Glycogen levels were significantly decreased and ribosomal RNA levels were reduced by almost 75% in Igf1 null chondrocytes. These data suggest that Igf1 promotes longitudinal bone growth by 'insulin-like' anabolic actions which augment chondrocyte hypertrophy.
CITATION STYLE
Wang, J., Zhou, J., & Bondy, C. A. (1999). Igf1 promotes longitudinal bone growth by insulin‐like actions augmenting chondrocyte hypertrophy. The FASEB Journal, 13(14), 1985–1990. https://doi.org/10.1096/fasebj.13.14.1985
Mendeley helps you to discover research relevant for your work.