Panoramic images, 2D feature-based and change detection methods for the documentation of contaminated crime scenes

3Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

This paper aims to propose and validate a methodology which can support forensic technicians while documenting a crime scene, after a contamination event (either accidental or deliberate) has changed its original appearance. Indeed, investigators need fast and automated tools to detect changes that occurred at a scene over time, and solutions to this problem are still an open issue. The contribution of the paper for addressing this need is twofold. First, a new methodology is introduced, that exploits panoramic images acquired with the Ricoh Theta SC camera, and 2D feature-based methods. The core idea is that SIFT features inherently contain scene information and, thanks to their good stability and invariance, can be exploited to detect possible changes that occurred at a scene surveyed with multi-temporal images. Second, in order to evaluate the performance of the proposed methodology, a reference approach is applied, based on state-of-the-art change detection algorithms (MAF/MAD), originally developed for remote sensing applications. Both methods are tested by simulating a typical crime scene, and a contamination event at the Crime Scene House (UK).

Cite

CITATION STYLE

APA

Abate, D., Toschi, I., Sturdy-Colls, C., & Remondino, F. (2018). Panoramic images, 2D feature-based and change detection methods for the documentation of contaminated crime scenes. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives (Vol. 42, pp. 1–8). International Society for Photogrammetry and Remote Sensing. https://doi.org/10.5194/isprs-archives-XLII-2-1-2018

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free