Decreased vitamin C uptake mediated by SLC2A3 promotes leukaemia progression and impedes TET2 restoration

26Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Vitamin C suppresses leukaemogenesis by modulating Tet methylcytosine dioxygenase (TET) activity. However, its beneficial effect in the treatment of patients with acute myeloid leukaemia (AML) remains controversial. In this study, we aimed to identify a potential predictive biomarker for vitamin C treatment in AML. Methods: Gene expression patterns and their relevance to the survival of AML patients were analysed with The Cancer Genome Atlas (TCGA) and Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database cases. In vitro experiments were performed on AML cell lines, a SLC2A3-knockdown cell line and patient-derived primary AML cells. Results: SLC2A3 expression was significantly decreased in leukaemic blast cells. Below-median SLC2A3 expression was associated with poor overall survival. Low SLC2A3 expression was associated with less effective demethylation, and a diminished vitamin C effect in the AML and lymphoma cell lines. SLC2A3 knockdown in the KG-1 cell line decreased the response of vitamin C. In patient-derived primary AML cells, vitamin C only restored TET2 activity when SLC2A3 was expressed. Conclusion: SLC2A3 could be used as a potential biomarker to predict the effect of vitamin C treatment in AML.

Cite

CITATION STYLE

APA

Liu, J., Hong, J., Han, H., Park, J., Kim, D., Park, H., … Yoon, S. S. (2020). Decreased vitamin C uptake mediated by SLC2A3 promotes leukaemia progression and impedes TET2 restoration. British Journal of Cancer, 122(10), 1445–1452. https://doi.org/10.1038/s41416-020-0788-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free