Towards scalable and reusable predictive models for cyber twins in manufacturing systems

12Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Smart factories are intelligent, fully-connected and flexible systems that can continuously monitor and analyse data streams from interconnected systems to make decisions and dynamically adapt to new circumstances. The implementation of smart factories represents a leap forward compared to traditional automation. It is underpinned by the deployment of cyberphysical systems that, through the application of Artificial Intelligence, integrate predictive capabilities and foster rapid decision-making. Deep Learning (DL) is a key enabler for the development of smart factories. However, the implementation of DL in smart factories is hindered by its reliance on large amounts of data and extreme computational demand. To address this challenge, Transfer Learning (TL) has been proposed to promote the efficient training of models by enabling the reuse of previously trained models. In this paper, by means of a specific example in aluminium can manufacturing, an empirical study is presented, which demonstrates the potential of TL to achieve fast deployment of scalable and reusable predictive models for Cyber Manufacturing Systems. Through extensive experiments, the value of TL is demonstrated to achieve better generalisation and model performance, especially with limited datasets. This research provides a pragmatic approach towards predictive model building for cyber twins, paving the way towards the realisation of smart factories.

Cite

CITATION STYLE

APA

Giannetti, C., & Essien, A. (2022). Towards scalable and reusable predictive models for cyber twins in manufacturing systems. Journal of Intelligent Manufacturing, 33(2), 441–455. https://doi.org/10.1007/s10845-021-01804-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free