Silicoaluminophosphate molecular sieves of SAPO-11 type (AEL structure) were synthesized by the hydrothermal method, from the residue of a fluorescent lamp as a source or Si, Al, and P in the presence of water and di-propyamine (DPA) as an organic template. To adjust the P2O5/SiO2 and Si/Al and ratios, specific amounts of silica, alumina, or alumina hydroxide and orthophosphoric acid were added to obtain a gel with molar chemical composition 1.0 Al2O3:1.0 P2O5:1.2 DPA:0.3 SiO2:120 H2O. The syntheses were carried out at a temperature of 473 K at crystallization times of 24, 48, and 72 h. The fluorescent lamp residue and the obtained samples were characterized by X-ray fluorescence, X-ray diffraction, scanning electron microscopy, and BET surface area analysis using nitrogen adsorption isotherms. The presence of fluorapatite was detected as the main crystalline phase in the residue, jointly with considered amounts of silica, alumina, and phosphorus in oxide forms. The SAPO-11 prepared using aluminum hydroxide as Al source, P2O5/SiO2 molar ratio of 3.6 and Si/Al ratio of 0.14, at crystallization time of 72 h, achieves a yield of 75% with a surface area of 113 m2/g, showing that the residue from a fluorescent lamp is an alternative source for development of new materials based on Si, Al, and P.
CITATION STYLE
Lima, G. C. C. S., Mello, M. I. S., Bieseki, L., Araujo, A. S., & Pergher, S. B. C. (2021). Hydrothermal synthesis of silicoaluminophosphate with ael structure using a residue of fluorescent lamps as starting material. Molecules, 26(23). https://doi.org/10.3390/molecules26237366
Mendeley helps you to discover research relevant for your work.