Interventions for replacing missing teeth: alveolar ridge preservation techniques for dental implant site development

Citations of this article
Mendeley users who have this article in their library.

This article is free to access.


Background: Alveolar bone changes following tooth extraction can compromise prosthodontic rehabilitation. Alveolar ridge preservation (ARP) has been proposed to limit these changes and improve prosthodontic and aesthetic outcomes when implants are used. This is an update of the Cochrane Review first published in 2015. Objectives: To assess the clinical effects of various materials and techniques for ARP after tooth extraction compared with extraction alone or other methods of ARP, or both, in patients requiring dental implant placement following healing of extraction sockets. Search methods: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 19 March 2021), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2021, Issue 2), MEDLINE Ovid (1946 to 19 March 2021), Embase Ovid (1980 to 19 March 2021), Latin American and Caribbean Health Science Information database (1982 to 19 March 2021), Web of Science Conference Proceedings (1990 to 19 March 2021), Scopus (1966 to 19 March 2021), ProQuest Dissertations and Theses (1861 to 19 March 2021), and OpenGrey (to 19 March 2021). The US National Institutes of Health Ongoing Trials Register ( and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. A number of journals were also handsearched. Selection criteria: We included all randomised controlled trials (RCTs) on the use of ARP techniques with at least six months of follow-up. Outcome measures were: changes in the bucco-lingual/palatal width of alveolar ridge, changes in the vertical height of the alveolar ridge, complications, the need for additional augmentation prior to implant placement, aesthetic outcomes, implant failure rates, peri-implant marginal bone level changes, changes in probing depths and clinical attachment levels at teeth adjacent to the extraction site, and complications of future prosthodontic rehabilitation. Data collection and analysis: We selected trials, extracted data, and assessed risk of bias in duplicate. Corresponding authors were contacted to obtain missing information. We estimated mean differences (MD) for continuous outcomes and risk ratios (RR) for dichotomous outcomes, with 95% confidence intervals (95% CI). We constructed 'Summary of findings' tables to present the main findings and assessed the certainty of the evidence using GRADE. Main results: We included 16 RCTs conducted worldwide involving a total of 524 extraction sites in 426 adult participants. We assessed four trials as at overall high risk of bias and the remaining trials at unclear risk of bias. Nine new trials were included in this update with six new trials in the category of comparing ARP to extraction alone and three new trials in the category of comparing different grafting materials. ARP versus extraction: from the seven trials comparing xenografts with extraction alone, there is very low-certainty evidence of a reduction in loss of alveolar ridge width (MD -1.18 mm, 95% CI -1.82 to -0.54; P = 0.0003; 6 studies, 184 participants, 201 extraction sites), and height (MD -1.35 mm, 95% CI -2.00 to -0.70; P < 0.0001; 6 studies, 184 participants, 201 extraction sites) in favour of xenografts, but we found no evidence of a significant difference for the need for additional augmentation (RR 0.68, 95% CI 0.29 to 1.62; P = 0.39; 4 studies, 154 participants, 156 extraction sites; very low-certainty evidence) or in implant failure rate (RR 1.00, 95% CI 0.07 to 14.90; 2 studies, 70 participants/extraction sites; very low-certainty evidence). From the one trial comparing alloplasts versus extraction, there is very low-certainty evidence of a reduction in loss of alveolar ridge height (MD -3.73 mm; 95% CI -4.05 to -3.41; 1 study, 15 participants, 60 extraction sites) in favour of alloplasts. This single trial did not report any other outcomes. Different grafting materials for ARP: three trials (87 participants/extraction sites) compared allograft versus xenograft, two trials (37 participants, 55 extraction sites) compared alloplast versus xenograft, one trial (20 participants/extraction sites) compared alloplast with and without membrane, one trial (18 participants, 36 extraction sites) compared allograft with and without synthetic cell-binding peptide P-15, and one trial (30 participants/extraction sites) compared alloplast with different particle sizes. The evidence was of very low certainty for most comparisons and insufficient to determine whether there are clinically significant differences between different ARP techniques based on changes in alveolar ridge width and height, the need for additional augmentation prior to implant placement, or implant failure. We found no trials which evaluated parameters relating to clinical attachment levels, specific aesthetic or prosthodontic outcomes for any of the comparisons.
No serious adverse events were reported with most trials indicating that the procedure was uneventful. Among the complications reported were delayed healing with partial exposure of the buccal plate at suture removal, postoperative pain and swelling, moderate glazing, redness and oedema, membrane exposure and partial loss of grafting material, and fibrous adhesions at the cervical part of previously preserved sockets, for the comparisons xenografts versus extraction, allografts versus xenografts, alloplasts versus xenografts, and alloplasts with and without membrane. Authors' conclusions: ARP techniques may minimise the overall changes in residual ridge height and width six months after extraction but the evidence is very uncertain. There is lack of evidence of any differences in the need for additional augmentation at the time of implant placement, implant failure, aesthetic outcomes, or any other clinical parameters due to lack of information or long-term data. There is no evidence of any clinically significant difference between different grafting materials and barriers used for ARP. Further long-term RCTs that follow CONSORT guidelines ( are necessary.




Atieh, M. A., Alsabeeha, N. H. M., Payne, A. G. T., Ali, S., Faggion, C. M. J., & Esposito, M. (2021, April 26). Interventions for replacing missing teeth: alveolar ridge preservation techniques for dental implant site development. Cochrane Database of Systematic Reviews. John Wiley and Sons Ltd.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free