Domain-based local pair natural orbital coupled cluster (DLPNO-CC) has become increasingly popular to calculate relative energies (e.g., reaction energies and reaction barriers). It can be applied within a multi-level DLPNO-CC-in-DLPNO-CC ansatz to reduce the computational cost and focus the available computational resources on a specific subset of the occupied orbitals. We demonstrate how this multi-level DLPNO-CC ansatz can be combined with our direct orbital selection (DOS) approach [M. Bensberg and J. Neugebauer, J. Chem. Phys. 150, 214106 (2019)] to automatically select orbital sets for any multi-level calculation. We find that the parameters for the DOS procedure can be chosen conservatively such that they are transferable between reactions. The resulting automatic multi-level DLPNO-CC method requires no user input and is extremely robust and accurate. The computational cost is easily reduced by a factor of 3 without sacrificing accuracy. We demonstrate the accuracy of the method for a total of 61 reactions containing up to 174 atoms and use it to predict the relative stability of conformers of a Ru-based catalyst.
CITATION STYLE
Bensberg, M., & Neugebauer, J. (2021). Direct orbital selection within the domain-based local pair natural orbital coupled-cluster method. Journal of Chemical Physics, 155(22). https://doi.org/10.1063/5.0071347
Mendeley helps you to discover research relevant for your work.