Objective and design: We examined the role of IL-6 in the temporal development of cardiac ischemia–reperfusion injury employing a closed-chest I/R model. Materials/methods: Infarction, local and systemic inflammation, neutrophil infiltration, coagulation and ST elevation/resolution were compared between wild-type (WT) and IL-6-deficient (IL-6−/−) mice after 1 h ischemia and 0, ½, 3, and 24 h reperfusion. Results: IL-6 deficiency reduced infarct size at 3 h reperfusion (28.8 ± 4.5 % WT vs 17.6 ± 2.5 % IL-6−/−), which reduction persisted and remained similar at 24 h reperfusion (25.1 ± 3.0 % WT vs 14.6 ± 4.4 % IL-6−/−). Serum Amyloid A was reduced at 24 h reperfusion only (57.5 ± 4.9 WT vs 24.8 ± 5.6 ug/ml IL-6−/− mice). Cardiac cytokines (IL-6, IL-1β and TNFα) peaked at 3 h reperfusion, but IL-1β and TNFα levels were unaffected by IL-6 deficiency. Significant neutrophil influx was only detected at 24 h reperfusion and was similar for WT and IL-6−/−. Tissue factor peaked at 24 h reperfusion, whereas fibrin/fibrinogen peaked at 3 h reperfusion and was completely resolved at 24 h reperfusion; both coagulation factors were unaltered by IL-6 deficiency. Prolonged ST elevation was observed during ischemia that completely resolved for both genotypes at early reperfusion. Conclusions: The data suggest that, in the absence of major surgical intervention, IL-6 contributes to the development of infarct size in the early phase of reperfusion; this contribution did not depend on neutrophil influx, IL-1β and TNFα, tissue factor and fibrin.
CITATION STYLE
Jong, W. M. C., ten Cate, H., Linnenbank, A. C., de Boer, O. J., Reitsma, P. H., de Winter, R. J., & Zuurbier, C. J. (2016). Reduced acute myocardial ischemia–reperfusion injury in IL-6-deficient mice employing a closed-chest model. Inflammation Research, 65(6), 489–499. https://doi.org/10.1007/s00011-016-0931-4
Mendeley helps you to discover research relevant for your work.