Despite high structural homology between NO reductases (NORs) and heme-copper oxidases (HCOs), factors governing their reaction specificity remain to be understood. Using a myoglobinbased model of NOR (FeBMb) and tuning its heme redox potentials (E°′) to cover the native NOR range, through manipulating hydrogen bonding to the proximal histidine ligand and replacing heme b with monoformyl (MF-) or diformyl (DF-) hemes, we herein demonstrate that the E°′ holds the key to reactivity differences between NOR and HCO. Detailed electrochemical, kinetic, and vibrational spectroscopic studies, in tandem with density functional theory calculations, demonstrate a strong influence of heme E°′ on NO reduction. Decreasing E°′ from +148 to -130 mV significantly impacts electronic properties of the NOR mimics, resulting in 180- and 633-fold enhancements in NO association and hemenitrosyl decay rates, respectively. Our results indicate that NORs exhibit finely tuned E°′ that maximizes their enzymatic efficiency and helps achieve a balance between opposite factors: fast NO binding and decay of dinitrosyl species facilitated by low E°′ and fast electron transfer facilitated by high E°′. Only when E°′ is optimally tuned in FeBMb(MF-heme) for NO binding, heme-nitrosyl decay, and electron transfer does the protein achieve multiple (>35) turnovers, previously not achieved by synthetic or enzymebased NOR models. This also explains a long-standing question in bioenergetics of selective cross-reactivity in HCOs. Only HCOs with heme E°′ in a similar range as NORs (between -59 and 200 mV) exhibit NOR reactivity. Thus, our work demonstrates efficient tuning of E°′ in various metalloproteins for their optimal functionality.
CITATION STYLE
Bhagi-Damodaran, A., Reed, J. H., Zhu, Q., Shi, Y., Hosseinzadeh, P., Sandoval, B. A., … Lu, Y. (2018). Heme redox potentials hold the key to reactivity differences between nitric oxide reductase and heme-copper oxidase. Proceedings of the National Academy of Sciences of the United States of America, 115(24), 6195–6200. https://doi.org/10.1073/pnas.1720298115
Mendeley helps you to discover research relevant for your work.