Successful negotiation of obstacles during walking relies on the integration of visual information about the environment with ongoing locomotor commands. When information about the body and the environment is removed through occlusion of the lower visual field, individuals increase downward head pitch angle, reduce foot placement precision, and increase safety margins during crossing. However, whether these effects are mediated by loss of visual information about the lower extremities, the obstacle, or both remains to be seen. Here we used a fully immersive, virtual obstacle negotiation task to investigate how visual information about the lower extremities is integrated with information about the environment to facilitate skillful obstacle negotiation. Participants stepped over virtual obstacles while walking on a treadmill with one of three types of visual feedback about the lower extremities: no feedback, end-point feedback, and a link-segment model. We found that absence of visual information about the lower extremities led to an increase in the variability of leading foot placement after crossing. The presence of a visual representation of the lower extremities promoted greater downward head pitch angle during the approach to and subsequent crossing of an obstacle. In addition, having greater downward head pitch was associated with closer placement of the trailing foot to the obstacle, further placement of the leading foot after the obstacle, and higher trailing foot clearance. These results demonstrate that the fidelity of visual information about the lower extremities influences both feedforward and feedback aspects of visuomotor coordination during obstacle negotiation. NEW & NOTEWORTHY Here we demonstrate that visual information about the lower extremities is utilized for precise foot placement and control of safety margins during obstacle negotiation. We also found that when a visual representation of the lower extremities is present, this information is used in the online control of foot trajectory. Together, our results highlight how visual information about the body and the environment is integrated with motor commands for planning and online control of obstacle negotiation.
CITATION STYLE
Kim, A., Kretch, K. S., Zhou, Z., & Finley, J. M. (2018). The quality of visual information about the lower extremities influences visuomotor coordination during virtual obstacle negotiation. Journal of Neurophysiology, 120(2), 839–847. https://doi.org/10.1152/jn.00931.2017
Mendeley helps you to discover research relevant for your work.