Removal of Penicillin G by combination of sonolysis and Photocatalytic (sonophotocatalytic) process from aqueous solution: process optimization using RSM (Response Surface Methodology)

  • Almasi A
  • Dargahi A
  • Mohamadi M
  • et al.
N/ACitations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

INTRODUCTION Penicillin G (PG) is used in a variety of infectious diseases, extensively. Generally, when antibiotics are introduced into the food chain, they pose a threat to the environment and can risk health outcomes. The aim of the present study was the removal of Penicillin G from an aqueous solution through an integrated system of UV/ZnO and UV/WO3 with Ultrasound pretreatment. METHODS In this descriptive-analytical work dealing with the removal of Penicillin G from an aqueous solution, four significant variables, contact time (60-120 min), Penicillin G concentration (50-150 mg/L), ZnO dose (200-400 mg/L), and WO3 dose (100-200 mg/L) were investigated. Experiments were performed in a Pyrex reactor (batch, 1 Lit) with an artificial UV 100-Watt medium pressure mercury lamp, coupled with ultrasound (100 W, 40 KHz) for PG pre-treatment. Chemical Oxygen Demand (COD) was selected to follow the performance of the photo-catalytic process and sonolysis. The experiments were based on a Central Composite Design (CCD) and analyzed by Response Surface Methodology (RSM). A mathematical model of the process was designed according to the proposed degradation scheme. RESULTS The results showed that the maximum removal of PG occurred in ultrasonic/UV/WO3 in the presence of 50 mg/L WO3 and contact time of 120 minutes. In addition, an increase in the PG concentration caused a decrease in COD removal. As the initial concentration of the catalyst increased, the COD removal also increased. The maximum COD removal (91.3%) achieved by 200 mg/L WO3 and 400 mg/l ZnO, a contact time of 120 minutes, and an antibiotic concentration of 50 mg/L. All of the variables in the process efficiency were found to be significant (p < 0.05). Catalyst dose and contact time were shown to have a positive effect on the response (p < 0.05). CONCLUSION The research data supported the conclusion that the combination of advanced oxidation process of sonolysis and photocatalytic (sonophotocatalytic) were applicable and environmentally friendly processes, which preferably can be applied extensively.

Cite

CITATION STYLE

APA

Almasi, A., Dargahi, A., Mohamadi, M., Biglari, H., Amirian, F., & Raei, M. (2016). Removal of Penicillin G by combination of sonolysis and Photocatalytic (sonophotocatalytic) process from aqueous solution: process optimization using RSM (Response Surface Methodology). Electronic Physician, 8(9), 2878–2887. https://doi.org/10.19082/2878

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free