Cranial neural crest cells form corridors prefiguring sensory neuroblast migration

50Citations
Citations of this article
83Readers
Mendeley users who have this article in their library.

Abstract

The majority of cranial sensory neurons originate in placodes in the surface ectoderm, migrating to form ganglia that connect to the central nervous system (CNS). Interactions between inward-migrating sensory neuroblasts and emigrant cranial neural crest cells (NCCs) play a role in coordinating this process, but how the relationship between these two cell populations is established is not clear. Here, we demonstrate that NCCs generate corridors delineating the path of migratory neuroblasts between the placode and CNS in both chick and mouse. In vitro analysis shows that NCCs are not essential for neuroblast migration, yet act as a superior substrate to mesoderm, suggesting provision of a corridor through a less-permissive mesodermal territory. Early organisation of NCC corridors occurs prior to sensory neurogenesis and can be recapitulated in vitro; however, NCC extension to the placode requires placodal neurogenesis, demonstrating reciprocal interactions. Together, our data indicate that NCC corridors impose physical organisation for precise ganglion formation and connection to the CNS, providing a local environment to enclose migrating neuroblasts and axonal processes as they migrate through a non-neural territory. © 2013. Published by The Company of Biologists Ltd.

Cite

CITATION STYLE

APA

Freter, S., Fleenor, S. J., Freter, R., Liu, K. J., & Begbie, J. (2013). Cranial neural crest cells form corridors prefiguring sensory neuroblast migration. Development (Cambridge), 140(17), 3595–3600. https://doi.org/10.1242/dev.091033

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free