Background: The mechanism of winter survival for perennials involves multiple levels of gene regulation, especially cold resistance. Agropyron mongolicum is one important perennial grass species, but there is little information regarding its overwintering mechanism. We performed a comprehensive transcriptomics study to evaluate global gene expression profiles regarding the winter survival of Agropyron mongolicum. A genome-wide gene expression analysis involving four different periods was identified. Twenty-eight coexpression modules with distinct patterns were performed for transcriptome profiling. Furthermore, differentially expressed genes (DEGs) and their functional characterization were defined using a genome database such as NT, NR, COG, and KEGG. Result: A total of 79.6% of the unigenes were characterized to be involved in 136 metabolic pathways. In addition, the expression level of ABA receptor genes, regulation of transcription factors, and a coexpression network analysis were conducted using transcriptome data. We found that ABA receptors regulated downstream gene expression by activating bZIP and NAC transcription factors to improve cold resistance and winter survival. Conclusion: This study provides comprehensive transcriptome data for the characterization of overwintering-related gene expression profiles in A. mongolicum. Genomics resources can help provide a better understanding of the overwintering mechanism for perennial gramineae species. By analyzing genome-wide expression patterns for the four key stages of tiller bud development, the functional characteristics of the DEGs were identified that participated in various metabolic pathways and have been shown to be strongly associated with cold tolerance. These results can be further exploited to determine the mechanism of overwintering in perennial gramineae species.
CITATION STYLE
Du, J., Li, X., Li, T., Yu, D., & Han, B. (2017). Genome-wide transcriptome profiling provides overwintering mechanism of Agropyron mongolicum. BMC Plant Biology, 17(1). https://doi.org/10.1186/s12870-017-1086-3
Mendeley helps you to discover research relevant for your work.