Bacitracin sensing in Bacillus subtilis

145Citations
Citations of this article
124Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The extracellular presence of antibiotics is a common threat in microbial life. Their sensitive detection and subsequent induction of appropriate resistance mechanisms is therefore a prerequisite for survival. The bacitracin stress response network of Bacillus subtilis consists of four signal-transducing systems, the two-component systems (TCS) BceRS, YvcPQ and LiaRS, and the extracytoplasmic function (ECF) σ factor σM. Here, we investigated the mechanism of bacitracin perception and the response hierarchy within this network. The BceRS-BceAB TCS/ABC transporter module is the most sensitive and efficient bacitracin resistance determinant. The ABC transporter BceAB not only acts as a bacitracin detoxification pump, but is also crucial for bacitracin sensing, indicative of a novel mechanism of stimulus perception, conserved in Firmicutes bacteria. The Bce system seems to respond to bacitracin directly (drug sensing), whereas the LiaRS TCS and σM respond only at higher concentrations and indirectly to bacitracin action (damage sensing). The YvcPQ-YvcRS system is subject to cross-activation via the paralogous Bce system, and is therefore only indirectly induced by bacitracin. The bacitracin stress response network is optimized to respond to antibiotic gradients in a way that maximizes the gain and minimizes the costs of this stress response. © 2008 The Authors.

Cite

CITATION STYLE

APA

Rietkötter, E., Hoyer, D., & Mascher, T. (2008). Bacitracin sensing in Bacillus subtilis. Molecular Microbiology, 68(3), 768–785. https://doi.org/10.1111/j.1365-2958.2008.06194.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free