Physical Properties of Foods and Effect of Water on Them X Hydration and Mechanical Properties of Food Hydrocolloids

0Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

Structures and mechanical properties of food hydrocolloids consisting of hydrated food macromolecules such as polysaccharide and protein have been reviewed. Food sols often exhibit a decrease in the viscosity with increasing flow rate (i.e., shear-thinning) due to flow-induced changes in the three-dimensional structure of food macromolecules. Relatively high viscosities at low flow rates are highly effective in slowing down the rate of floatation or sedimentation of insoluble particles. For transporting the bulk sol, the flow rate may be increased in order to decrease the viscosity to the same order of magnitude as that of water. A food sol may possess a true yield stress. If the yield stress value is sufficiently larger than the buoyancy or gravitational force, floatation or sedimentation of insoluble particles never occurs. Atomic force microscopy images of gellan gum bulk gels have revealed that the gel networks are composed of rigid rod-like strands that are crosslinked with other strands at the ends. It is unreasonable to assume that the elasticity of such a network is determined by entropic effects. A novel model for describing the concentration dependence of the elasticity has been proposed by considering the bending elasticity of rod-like network strands. © 2010, Japan Society for Food Engineering. All rights reserved.

Cite

CITATION STYLE

APA

Ikeda, S. (2010). Physical Properties of Foods and Effect of Water on Them X Hydration and Mechanical Properties of Food Hydrocolloids. Japan Journal of Food Engineering, 11(4), 161–168. https://doi.org/10.11301/jsfe.11.161

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free