Comparative hydrogen-deuterium exchange for a mesophilic vs thermophilic dihydrofolate reductase at 25 °c: Identification of a single active site region with enhanced flexibility in the mesophilic protein

25Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The technique of hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) has been applied to a mesophilic (E. coli) dihydrofolate reductase under conditions that allow direct comparison to a thermophilic (B. stearothermophilus) ortholog, Ec-DHFR and Bs-DHFR, respectively. The analysis of hydrogen-deuterium exchange patterns within proteolytically derived peptides allows spatial resolution, while requiring a series of controls to compare orthologous proteins with only ca. 40% sequence identity. These controls include the determination of primary structure effects on intrinsic rate constants for HDX as well as the use of existing 3-dimensional structures to evaluate the distance of each backbone amide hydrogen to the protein surface. Only a single peptide from the Ec-DHFR is found to be substantially more flexible than the Bs-DHFR at 25 °C in a region located within the protein interior at the intersection of the cofactor and substrate-binding sites. The surrounding regions of the enzyme are either unchanged or more flexible in the thermophilic DHFR from B. stearothermophilus. The region with increased flexibility in Ec-DHFR corresponds to one of two regions previously proposed to control the enthalpic barrier for hydride transfer in Bs-DHFR [ Oyeyemi et al. (2010) Proc. Natl. Acad. Sci. U.S.A.107, 10074 ]. © 2011 American Chemical Society.

Cite

CITATION STYLE

APA

Oyeyemi, O. A., Sours, K. M., Lee, T., Kohen, A., Resing, K. A., Ahn, N. G., & Klinman, J. P. (2011). Comparative hydrogen-deuterium exchange for a mesophilic vs thermophilic dihydrofolate reductase at 25 °c: Identification of a single active site region with enhanced flexibility in the mesophilic protein. Biochemistry, 50(38), 8251–8260. https://doi.org/10.1021/bi200640s

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free