Radiation therapy is widely used for benign and malignant brain tumours as it is effective and well tolerated. However, damage to the surrounding healthy nervous system tissue leads to a variety of complications both in the short term and long term, ranging from mild and self-limiting to irreversible and fatal. Radiation neurotoxicity is due to a combination of early inflammation and oligodendroglial damage followed later by brain tissue necrosis, white matter damage, accelerated vascular disease and the development of secondary tumours. This article explains the basic principles of radiation physics, the different modalities used in clinical practice, how radiotherapy is planned and delivered and the scientific basis of radiation damage. The main body of the article focuses on the clinical features of radiation toxicity in the brain, spinal cord, cranial and peripheral nerves with an emphasis on the distinction between early and delayed complications.
CITATION STYLE
Kosmin, M., & Rees, J. (2022, August 22). Radiation and the nervous system. Practical Neurology. BMJ Publishing Group. https://doi.org/10.1136/pn-2022-003343
Mendeley helps you to discover research relevant for your work.