The purpose of this pilot study was to investigate the effects of change-of-direction (CoD) angle (90◦ vs. 180◦ ) and the inclusion of acceleration approach on total task time, CoD deficit, and agreement regarding inter-limb asymmetry direction across CoD tasks. The sample included 13 young male handball players (age: 22.4 ± 3.2 years). The CoD tasks were performed over a 10 m distance with 90◦ and 180◦ turns. Both CoD tasks were performed under two conditions: (1) from the standing start and, (2) with a 10 m prior acceleration approach. Linear sprint times over a 10 m distance were also recorded for the purpose of determining the CoD deficit. The differences between the outcomes of different test variants were assessed with pairwise t-tests and associated Cohen’s d effect size. The agreement in terms of inter-limb asymmetry direction was assessed descriptively, using percentage of agreement. Results showed that the inclusion of the 10 m approach reduced the total task time (mean differences ranging between 0.26 and 0.35 s; d = 2.27–4.02; p < 0.002). The differences between 90◦ and 180◦ turn times were statistically significant under both conditions: (a) without approach (0.44–0.48 s; d = 4.72–4.84; all p < 0.001), and (b) with approach (0.50–0.54 s; d = 4.41–5.03; p < 0.001). The agreement regarding inter-limb asymmetry direction among the tasks was 30.7–61.5%. The differences between the tasks could be explained by the angle–velocity trade-off. The results of this study imply that the CoD tasks should not be used interchangeably when assessing inter-limb asymmetries.
CITATION STYLE
Kozinc, Ž., Bishop, C., Pleša, J., & Šarabon, N. (2021). Levels of agreement for the direction of inter-limb asymmetry during four simple change-of-direction tests in young male handball players: A pilot study. Symmetry, 13(10). https://doi.org/10.3390/sym13101940
Mendeley helps you to discover research relevant for your work.