Toward Understanding Catalyst Layer Deposition Processes and Distribution in Anodic Porous Transport Electrodes in Proton Exchange Membrane Water Electrolyzers

22Citations
Citations of this article
50Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Finding the optimum structure in porous transport electrodes (PTEs) for proton exchange membrane water electrolyzer anodes is one of the central current technological challenges. Both the structure of the porous transport layer (PTL) and its interaction with the catalyst layer are crucial in finding this optimum structure. In this regard, manufacturing the catalyst layer on top of a PTL as a structure-building process must be understood to find improved transport electrode structures. This work presents a PTE tomography where the catalyst ink is directly processed on a PTL. The catalyst distribution of anodic PTEs is analyzed and compared via X-ray microtomography and cross-sectional imaging of embedded PTE samples. The majority of the catalyst lies within the first 100 µm of the PTE. Considering the penetration depth of the membrane, a maximum of 60% of the catalyst is effectively used. For the first time, a voxel-based catalyst layer deposition model is created and analyzed that is based on simple assumptions in the deposition process. This deposition model fits very well with the previous tomographic analysis. In the future, this model will allow more profound insight into the manufacturing process and is an important prerequisite for a future optimum design of PTEs.

Cite

CITATION STYLE

APA

Bierling, M., McLaughlin, D., Mayerhöfer, B., & Thiele, S. (2023). Toward Understanding Catalyst Layer Deposition Processes and Distribution in Anodic Porous Transport Electrodes in Proton Exchange Membrane Water Electrolyzers. Advanced Energy Materials, 13(13). https://doi.org/10.1002/aenm.202203636

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free